NASA Scientist Turns Mars Rover Selfie Into Art….

A ‘selfie’ taken by NASA’s Curiosity Rover has become such a hit that it inspired one of the scientists on the team that created the camera taking the selfie to turn into an artwork.

NASA shared the picture on its Facebook page. It’s titled Le Petit Rover – a reference to French writer-aviator’s book Le Petit Prince or The Little Prince, a book about a planet-hopping ‘prince’ who falls to Earth from an asteroid.

Photo Credit: Facebook/NASA’s Curiosity Mars Rover

The original image is a low-angle self-portrait of the Mars Rover, which shows the vehicle above the “Buckskin” rock target in the “Marias Pass” area of lower Mount Sharp.

Photo Credit: NASA/JPL-Caltech/MSSS

The artwork inspired by the original selfie has almost 3,000 likes so far.

Source….www.ndtv.com

Natarajan

image of the Day… Sunset Sequence in Mars…!!!

Sunset on Mars

NASA’s Curiosity Mars rover recorded this sequence of views of the sun setting at the close of the mission’s 956th Martian day, or sol (April 15, 2015), from the rover’s location in Gale Crater.

The four images shown in sequence here were taken over a span of 6 minutes, 51 seconds.

This was the first sunset observed in color by Curiosity.  The images come from the left-eye camera of the rover’s Mast Camera (Mastcam). The color has been calibrated and white-balanced to remove camera artifacts. Mastcam sees color very similarly to what human eyes see, although it is actually a little less sensitive to blue than people are.

Dust in the Martian atmosphere has fine particles that permit blue light to penetrate the atmosphere more efficiently than longer-wavelength colors.  That causes the blue colors in the mixed light coming from the sun to stay closer to sun’s part of the sky, compared to the wider scattering of yellow and red colors. The effect is most pronounced near sunset, when light from the sun passes through a longer path in the atmosphere than it does at mid-day.

Malin Space Science Systems, San Diego, built and operates the rover’s Mastcam. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.  For more information about Curiosity, visit http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl.

Credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.

Source……www.nasa.gov

” Curiosity Sees Prominent Mineral Veins on Mount Sharp, Mars…”

This View from the Mast Camera (Mastcam) on NASA’s Curiosity Mars rover shows a network of two-tone mineral veins at an area called “Garden City” on lower Mount Sharp.

The veins combine light and dark material. The veins at this site jut to heights of up to about 2.5 inches (6 centimeters) above the surrounding rock, and their widths range up to about 1.5 inches (4 centimeters). Figure 1 includes a 30-centimeter scale bar (about 12 inches).

Mineral veins such as these form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. In this case, the veins have been more resistant to erosion than the surrounding host rock.

This scene is a mosaic combining 28 images taken with Mastcam’s right-eye camera, which has a telephoto lens with a focal length of 100 millimeters. The component images were taken on March 18, 2015, during the 929th Martian day, or sol, of Curiosity’s work on Mars. The color has been approximately white-balanced to resemble how the scene would appear under daytime lighting conditions on Earth.

Malin Space Science Systems, San Diego, built and operates the rover’s Mastcam. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

Feature: Curiosity Eyes Prominent Mineral Veins on Mars
More information and image products

Image Credit: NASA/JPL-Caltech/MSSS 

Source:::: http://www.nasa.gov

Natarajan

Selfie of Curiosity ‘Mojovae’ Site on Mount Sharp of MARS !!!!

 

This self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the “Mojave” site, where its drill collected the mission’s second taste of Mount Sharp.

The scene combines dozens of images taken during January 2015 by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover’s robotic arm.  The pale “Pahrump Hills” outcrop surrounds the rover, and the upper portion of Mount Sharp is visible on the horizon.  Darker ground at upper right and lower left holds ripples of wind-blown sand and dust.

An annotated version, Fig. A, labels several of the sites Curiosity has investigated during three passes up the Pahrump Hills outcrop examining the outcrop at increasing levels of detail. The rover used its sample-collecting drill at “Confidence Hills” as well as at Mojave, and in late February was assessing “Telegraph Peak” as a third drilling site.

The view does not include the rover’s robotic arm.  Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic’s component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites “Rocknest” (http://photojournal.jpl.nasa.gov/catalog/PIA16468), “John Klein” (http://photojournal.jpl.nasa.gov/catalog/PIA16937) and “Windjana” (http://photojournal.jpl.nasa.gov/catalog/PIA18390).

Curiosity used its drill to collect a sample of rock powder from target “Mojave 2” at this site on Jan. 31, 2015.  The full-depth, sample-collection hole and the shallower preparation test hole beside it are visible in front of the rover in this self-portrait, and in more detail at http://photojournal.jpl.nasa.gov/catalog/PIA19115 .  The Mojave site is in the “Pink Cliffs” portion of the Pahrump Hills outcrop. The outcrop is an exposure of the Murray formation, which forms the basal geological layer of Mount Sharp.  Views of Pahrump Hills from other angles are at http://photojournal.jpl.nasa.gov/catalog/PIA19039 and the inset at http://mars.jpl.nasa.gov/msl/multimedia/images/?ImageID=6968 .

The frames showing the rover in this mosaic were taken during the 868th Martian day, or sol, of Curiosity’s work on Mars (Jan. 14, 2015).  Additional frames around the edges to extend the amount of terrain included in the scene were taken on Sol 882 (Jan. 29, 2015).  The frames showing the drill holes were taken on Sol 884 (Jan. 31, 2015).

For scale, the rover’s wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.  The drilled holes in the rock are 0.63 inch (1.6 centimeters) in diameter.

MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl/.

Credit: NASA/JPL-Caltech/MSSS

SOURCE:::::: http://www.nasa.gov

Natarajan

Image of the Day…Martian Lakebed …!!!

This evenly layered rock photographed by the Mast Camera (Mastcam) on NASA’s Curiosity Mars Rover shows a pattern typical of a lake-floor sedimentary deposit not far from where flowing water entered a lake.

The scene combines multiple frames taken with Mastcam’s right-eye camera on Aug. 7, 2014, during the 712th Martian day, or sol, of Curiosity’s work on Mars. It shows an outcrop at the edge of “Hidden Valley,” seen from the valley floor.  This view spans about 5 feet (1.5 meters) across in the foreground.  The color has been approximately white-balanced to resemble how the scene would appear under daytime lighting conditions on Earth. Figure A is a version with a superimposed scale bar of 50 centimeters (about 20 inches).

This is an example of a thick-laminated, evenly-stratified rock type that forms stratigraphically beneath cross-bedded sandstones regarded as ancient river deposits.  These rocks are interpreted to record sedimentation in a lake, as part of or in front of a delta, where plumes of river sediment settled out of the water column and onto the lake floor.

NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.  Malin Space Science Systems, San Diego, built and operates the rover’s Mastcam. For more information about Curiosity, visit http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl.

SOURCE::::www.nasa.gov/msl

Natarajan

 

Image of the Day…Curiosity Rover Drilling Mars Mountain…

Curiosity rover drill pulls first taste from Mars mountain

The mission’s emphasis has changed from drive, drive, drive to systematic layer-by-layer investigation. “Curiosity flew hundreds of millions of miles to do this.”

This image from the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover shows the first sample-collection hole drilled in Mount Sharp, the layered mountain that is the science destination of the rover's extended mission. Image credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity Mars rover has collected its first taste of the layered mountain whose scientific allure drew the mission to choose this part of Mars as a landing site.

Late Wednesday, September 24, the rover’s hammering drill chewed about 2.6 inches (6.7 centimeters) deep into a basal-layer outcrop on Mount Sharp and collected a powdered-rock sample. Data and images received early Thursday at NASA’s Jet Propulsion Laboratory, Pasadena, California, confirmed success of this operation. The powder collected by the drilling is temporarily held within the sample-handling mechanism on the rover’s arm.

This southeastward-looking vista from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows the

After landing on Mars in August 2012 but before beginning the drive toward Mount Sharp, Curiosity spent much of the mission’s first year productively studying in the Yellowknife Bay area, an area much closer to the landing site, but in the opposite direction.

From Yellowknife Bay to the base of Mount Sharp, Curiosity drove more than 5 miles (8 kilometers) in about 15 months, with pauses at a few science waypoints. The emphasis in mission operations has now changed from drive, drive, drive to systematic layer-by-layer investigation.

Jennifer Trosper of JPL is Curiosity Deputy Project Manager. She saud:

We’re putting on the brakes to study this amazing mountain.Curiosity flew hundreds of millions of miles to do this.

By investigating the shapes and chemical ingredients in the rock features, the team hopes to gain information about the possible composition of fluids at this Martian location long ago. Ashwin Vasavada of JPL is Curiosity Deputy Project Scientist. Vasavada said:

This drilling target is at the lowest part of the base layer of the mountain, and from here we plan to examine the higher, younger layers exposed in the nearby hills. This first look at rocks we believe to underlie Mount Sharp is exciting because it will begin to form a picture of the environment at the time the mountain formed, and what led to its growth.

Read more from NASA

 

SOURCE::::Earth sky news

Natarajan